
en

COBRA3 USER'S GUIDE

1.	. WELCOME TO THE WORLD OF SUUNTO DIVE COMPUTERS	7
2	. WARNINGS, CAUTIONS, AND NOTES	8
3.	. SUUNTO USER INTERFACE	17
	3.1. Navigating in the menus	17
	3.2. Button symbols and functions	19
4.	. GETTING STARTED	21
	4.1. TIME mode settings	21
	4.1.1. Setting the alarm	22
	4.1.2. Setting the time	22
	4.1.3. Setting the date	23
	4.1.4. Setting the backlight	23
	4.1.5. Setting the tones	24
	4.2. AC water contacts	24
	4.3. Learning how to use your compass	
	4.3.1. Compass display	26
	4.3.2. Locking a bearing	27
	4.3.3. Compass settings	
5.	BEFORE DIVING	
	5.1. The Suunto RGBM/Deep Stop Algorithm	
	5.2. Emergency ascents	
	5.3. Dive computer limitations	
	5.4. Audible and visual alarms	
	5.5. Error conditions	
	5.6. Air integration	38

	5.6.1. Connecting Suunto Cobra3 to a regulator	. 38
	5.7. DIVE mode settings	
	5.7.1. Setting the depth alarm	
	5.7.2. Setting the dive-time alarm	40
	5.7.3. Setting the nitrox values	
	5.7.4. Setting the personal/altitude adjustments	42
	5.7.5. Setting the sample rate	
	5.7.6. Setting the Safety Stops/deep stops	
	5.7.7. Setting the RGBM values	
	5.7.8. Setting the units	
	5.7.9. Setting the tank pressure alarm	
	5.8. Activation and pre-checks	
	5.8.1. Accessing DIVE mode	
	5.8.2. DIVE mode activation	
	5.8.3. Battery power indication	
	5.8.4. Diving at altitude	
	5.8.5. Personal adjustments	
	5.9. Safety Stops	
	5.9.1. Recommended Safety Stops	
	5.9.2. Mandatory Safety Stops	
_	5.10. Deep stops	
6.	DIVING	
	6.1. Diving in the AIR mode (DIVE Air)	
	6.1.1. Basic dive data	56

. 59 . 62 . 62 . 63 . 69 . 70
. 62 . 62 . 63 . 63
. 62 . 63 . 63 . 70
6 6 6 7
69 69
. 69 . 70
. 70
. 7
. 72
. 74
. 74
. 7
. 7
. 7
. 7
. 7
. 80
. 8
. 82
. 84
. 8
. 87

8. CARE AND MAINTENANCE OF MY SUUNTO DIVING COMPUTER	88
9. BATTERY REPLACEMENT	91
9.1. Battery kit	91
9.2. Required tools	92
9.3. Replacing the battery	92
10. TECHNICAL DATA	
10.1. Technical specifications	95
10.2. RGBM	
10.2.1. Suunto RGBM adaptive decompression	99
10.2.2. No-decompression limits for air	100
10.2.3. Altitude diving	
10.3. Oxygen exposure	103
11. INTELLECTUAL PROPERTY	104
11.1. Trademark	104
11.2. Copyright	104
11.3. Patent notice	104
12. DISCLAIMERS	105
12.1. CE	105
12.2. EN 13319	105
12.3. EN 250 / FIOH	
13. SUUNTO LIMITED WARRANTY	
14. DISPOSAL OF THE DEVICE	108
GLOSSARY	109

1. WELCOME TO THE WORLD OF SUUNTO DIVE COMPUTERS

Suunto Cobra3 wristop dive computer is designed to help you get the most out of your diving. By reading this manual and becoming familiar with the functions of your dive computer, you can begin a new era in your diving.

With integrated digital compass, air integration, and gas switching, Suunto Cobra3 simplifies your diving experience because all the information you need relating to depth, time, tank pressure, decompression status, and direction is available on one easy-to-read screen.

The Suunto Cobra3 User's Guide contains vitally important information which enables you to become familiar with your Suunto wristop dive computer. To understand the use, displays, and limitations of the instrument before using it, please read this user's guide carefully, and save it for further reference. Note also that a glossary is included at the back of the user's guide to help you understand dive-specific terminology.

2. WARNINGS, CAUTIONS, AND NOTES

Throughout this user's guide, important safety icons are displayed. Three classifications are used to separate these icons by their order of importance:

WARNING

is used in connection with a procedure or situation that may result in serious injury or death

▲ CAUTION

is used in connection with a procedure or situation that will result in damage to the device

🗾 NOTE

is used to emphasize important information

Before you go on to read the user's guide itself, it is extremely important that you read the following warnings. These warnings are intended to maximize your safety while using Suunto Cobra3 and must not be ignored.

WARNING

YOU MUST READ the leaflet and user guide for your dive computer. Failure to do so may lead to improper use, serious injury or death.

WARNING

ALLERGIC REACTIONS OR SKIN IRRITATIONS MAY OCCUR WHEN PRODUCT IS IN CONTACT WITH SKIN, EVEN THOUGH OUR PRODUCTS COMPLY WITH INDUSTRY STANDARDS. IN SUCH EVENT, STOP USE IMMEDIATELY AND CONSULT A DOCTOR.

▲ WARNING

NOT FOR PROFESSIONAL USE! Suunto dive computers are intended for recreational use only. The demands of commercial or professional diving may expose the diver to depths and conditions that tend to increase the risk of decompression illness (DCI). Therefore, Suunto strongly recommends that the device not be used for any commercial or professional diving activities.

MARNING

ONLY DIVERS TRAINED IN PROPER USE OF SCUBA DIVING EQUIPMENT SHOULD USE A DIVE COMPUTER! No dive computer can replace the need for proper dive training. Insufficient or improper training may cause a diver to commit errors that may lead to serious injury or death.

WARNING

THERE IS ALWAYS A RISK OF DECOMPRESSION ILLNESS (DCI) FOR ANY DIVE PROFILE EVEN IF YOU FOLLOW THE DIVE PLAN PRESCRIBED BY DIVE TABLES OR A DIVE COMPUTER. NO PROCEDURE, DIVE COMPUTER OR DIVE TABLE WILL PREVENT THE POSSIBILITY OF DCI OR OXYGEN TOXICITY! An individual's physiological make up can vary from day to day. The dive computer cannot account for these variations. You are strongly advised to remain well within the exposure limits provided by the instrument to minimize the risk of DCI. As an added measure of safety, you should consult a physician regarding your fitness before diving.

SUUNTO STRONGLY RECOMMENDS THAT SPORT DIVERS LIMIT THEIR MAXIMUM DEPTH TO 40 M/130 FT OR TO THE DEPTH CALCULATED BY THE COMPUTER BASED ON THE SELECTED $O_2\%$ AND A MAXIMUM PO_2 OF 1.4 BAR! Exposure to greater depths increases the risk of oxygen toxicity and decompression illness.

WARNING

DIVES WITH REQUIRED DECOMPRESSION STOPS ARE NOT RECOMMENDED. YOU SHOULD ASCEND AND BEGIN DECOMPRESSION IMMEDIATELY WHEN THE DIVE COMPUTER SHOWS YOU THAT A DECOMPRESSION STOP IS REQUIRED! Note the blinking ASC TIME symbol and the upward pointing arrow.

WARNING

USE BACK-UP INSTRUMENTS! Ensure that you use back-up instrumentation, including a depth gauge, submersible pressure gauge, timer or watch, and have access to decompression tables whenever diving with the dive computer.

WARNING

PERFORM PRE-CHECKS! Always activate and check the device before diving in order to ensure that all Liquid Crystal Display (LCD) segments are completely displayed, the device has not run out of battery power, and that the oxygen, altitude, personal, RGBM adjustments, and Safety/Deep Stop are correct.

YOU ARE ADVISED TO AVOID FLYING ANY TIME THE COM-PUTER COUNTS DOWN THE NO-FLY TIME. ALWAYS ACTIV-ATE THE COMPUTER TO CHECK THE REMAINING NO-FLY TIME PRIOR TO FLYING! Flying or traveling to a higher altitude within the no-fly time can greatly increase the risk of DCI. Review the recommendations given by Divers Alert Network (DAN). There can never be a flying after diving rule that is guaranteed to completely prevent decompression illness!

MARNING

THE DIVE COMPUTER SHOULD NEVER BE TRADED OR SHARED BETWEEN USERS WHILE IT IS IN OPERATION! Its information will not apply to someone who has not been wearing it throughout a dive or sequence of repetitive dives. Its dive profiles must match that of the user. If it is left on the surface during any dive, the dive computer will give inaccurate information for subsequent dives. No dive computer can take into account dives made without the computer. Thus, any diving activity up to four days prior to initial use of the computer may cause misleading information and must be avoided.

MARNING

THE DIVE COMPUTER WILL NOT ACCEPT FRACTIONAL PERCENTAGE VALUES OF OXYGEN CONCENTRATION. DO NOT ROUND UP FRACTIONAL PERCENTAGES! For example, 31.8% oxygen should be entered as 31%. Rounding up will cause nitrogen percentages to be understated and will affect decompression calculations. If there is a desire to adjust the computer to provide more conservative calculations, use the personal adjustment feature to affect decompression calculations or reduce the PO $_2$ setting to affect oxygen exposure according to the entered $O_2\%$ and PO_2 values.

WARNING

SET THE CORRECT ALTITUDE ADJUSTMENT MODE! When diving at altitudes greater than 300 m/1000 ft, the Altitude Adjustment feature must be correctly selected in order for the computer to calculate the decompression status. The dive computer is not intended for use at altitudes greater than 3000 m/10000 ft. Failure to select the correct Altitude Adjustment setting or diving above the maximum altitude limit will result in erroneous dive and planning data.

MARNING

SET THE CORRECT PERSONAL ADJUSTMENT MODE! Whenever it is believed that factors that tend to increase the possibility of DCI exist, it is recommended that you use this option to make the calculations more conservative. Failure to select the correct Personal Adjustment setting will result in erroneous dive and planning data.

MARNING

DO NOT EXCEED THE MAXIMUM ASCENT RATE! Rapid ascents increase the risk of injury. You should always make the Mandatory and Recommended Safety Stops after you have exceeded the maximum recommended ascent rate. If this Mandatory Safety Stop is not completed the decompression model will penalize your next dive(s).

WARNING

YOUR ACTUAL ASCENT TIME MAY BE LONGER THAN DIS-PLAYED BY THE INSTRUMENT! The ascent time will increase if you:

- remain at depth
- ascend slower than 10 m/min / 33 ft/min or
- make your decompression stop deeper than at the ceiling

These factors will also increase the amount of air required to reach the surface.

NEVER ASCEND ABOVE THE CEILING! You must not ascend above the ceiling during your decompression. In order to avoid doing so by accident, you should stay somewhat below the ceiling.

WARNING

DO NOT DIVE WITH A CYLINDER OF ENRICHED AIR IF YOU HAVE NOT PERSONALLY VERIFIED ITS CONTENTS AND ENTERED THE ANALYSIS VALUE INTO YOUR DIVE COMPUTER! Failure to verify cylinder contents and enter the appropriate $O_2\%$ into your dive computer will result in incorrect dive planning information.

WARNING

DO NOT DIVE WITH A GAS IF YOU HAVE NOT PERSONALLY VERIFIED ITS CONTENTS AND ENTERED THE ANALYZED VALUE INTO YOUR DIVE COMPUTER! Failure to verify cylinder contents and enter the appropriate gas values where applicable into your dive computer will result in incorrect dive planning information

WARNING

Diving with gas mixtures exposes you to risks that are different from those associated with diving with standard air. These risks are not obvious, and require training to understand and avoid. Risks include possible serious injury or death.

Traveling to a higher elevation can temporarily cause a change in the equilibrium of dissolved nitrogen in the body. It is recommended that you acclimatize to the new altitude by waiting at least three hours before diving.

MARNING

WHEN THE OXYGEN LIMIT FRACTION INDICATES THAT THE MAXIMUM LIMIT IS REACHED, YOU MUST IMMEDIATELY TAKE ACTION TO REDUCE OXYGEN EXPOSURE. Failure to take action to reduce oxygen exposure after the warning is given can rapidly increase the risk of oxygen toxicity, injury, or death

WARNING

Suunto also recommends that you receive training in Free diving techniques and physiology before conducting breath hold dives. No dive computer can replace the need for proper dive training. Insufficient or improper training may cause a diver to commit errors that may lead to serious injury or death.

MARNING

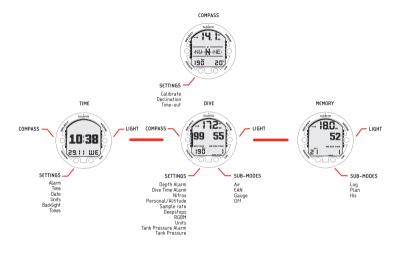
Using the Suunto Dive Planner software is not a substitute for proper dive training. Diving with mixed gases has dangers that are not familiar to divers diving with air. To dive with trimix, triox, heliox and nitrox or all of them, divers must have specialized training for the type of diving they are doing.

Always use realistic SAC rates and conservative turn pressures during dive planning. Overly optimistic or erroneous gas planning can result in the exhaustion of breathing gas during decompression or in a cave or a wreck.

MARNING

ENSURE THE WATER RESISTANCE OF THE DEVICE! Moisture inside the device or battery compartment will seriously damage the unit. Only an authorized SUUNTO dealer or distributor should do service activities.

NOTE


It is not possible to change between AIR, NITROX and GAUGE modes before the instrument has counted down the no-fly time. There are, however, exceptions to this: You can change from AIR to NITROX mode ex well as from AIR or NITROX mode to GAUGE mode even during the no-fly time. When planning both air and nitrox dives during the same dive series, you should set the instrument in NITROX mode and modify the gas mix accordingly.

In GAUGE mode the no-fly time is always 48 hours.

3. SUUNTO USER INTERFACE

3.1. Navigating in the menus

Suunto Cobra3 has four main operating modes - TIME mode (TIME), DIVE mode (DIVE), PLAN mode (PLAN), and MEMORY mode (MEMORY) – as well as the COMPASS submode, which can be activated from either TIME or DIVE modes. To toggle between the main modes, press the MODE button. To select a submode in DIVE, PLAN and MEMORY modes, press the UP/DOWN buttons.

3.2. Button symbols and functions

The table below explains the main functions of the dive computer's buttons. The buttons and their use is explained in more detail in the relevant sections of the user's guide.

Table 3.1. Button symbols and functions

Symbol	Button	Press	Main functions
	MODE	Short	Switch between main modes Switch from submode to main mode Activate backlight in DIVE mode
140	MODE	Long	Activate backlight in other modes Activate stopwatch in DIVE mode
	SELECT	Short	Select a submode Select and accept settings Select stopwatch to stop or start in DIVE mode
→	SELECT	Long	Activate compass in TIME and DIVE modes

Symbol	Button	Press	Main functions
WE /	UP	Short	Toggle between alternative displays Change submode Increase values
WE /s	UP	Long	Activate gas switching in NITROX mode
I.es varied	DOWN	Short	Toggle between alternative displays Change submode Decrease values
1.85	DOWN	Long	Enter Setting mode Toggle between ceiling and remaining air time display

4. GETTING STARTED

To get the most out of your Suunto Cobra3, use some time to personalize it and really make it YOUR computer. Set the correct time and date, as well as the alarms and tones, unit and backlight settings. Then, calibrate and test the compass function.

Suunto Cobra3 is a very user-friendly dive computer, and you will quickly become familiar with its functions. Make absolutely sure that you know your computer and have it set up as you want it BEFORE getting into the water.

4.1. TIME mode settings

The first thing to do with your Suunto Cobra3, is to modify the TIME mode settings: the time, alarm, date, units, backlight, and tones.

The display is illuminated by holding down the MODE button for more than 2 seconds.

The figure below shows how to enter the TIME Settings menu.

USE UP AND DOWN BUTTONS TO TOGGLE BETWEEN ALARM, TIME, DATE, UNITS, BACKLIGHT AND TONES.

4.1.1. Setting the alarm

The dive computer has a daily alarm function. When the daily alarm activates, the screen blinks and the alarm sounds for 60 seconds. Press any button to stop the alarm.

4.1.2. Setting the time

In the Time setting mode, you are able to set the hour, minute, and second, as well as choose between a 12 and 24 hour display.

4.1.3. Setting the date

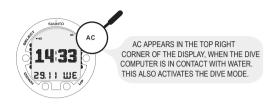
In the Date setting mode, you are able to set the year, month, and day. The day of the week is automatically calculated in accordance with the date. In metric units the date is presented as DD/MM, and in imperial units as MM/DD.

4.1.4. Setting the backlight

In the Backlight setting mode, you are able to turn the backlight ON or OFF and to define how long it stays on for (5, 10, 20, 30, or 60 seconds). When the backlight is turned OFF, it does not illuminate when an alarm sounds.

4.1.5. Setting the tones

In the Tones setting mode, you are able to activate or deactivate the tones.



■ NOTE

When the tones are off, there are no audible alarms.

4.2. AC water contacts

The water and data transfer contact is located on the rear of the case. When submerged, the water contact poles are connected by the conductivity of the water and the "AC" symbol appears on the display. The AC text is shown until the water contact deactivates.

Contamination or dirt on the water contact may prevent this automatic activation. Therefore, it is important that the water contact is kept clean. The contact can be cleaned with fresh water and a soft brush, for example a tooth brush.

4.3. Learning how to use your compass

Suunto Cobra3 integrates a digital compass, which can be used both while diving and on dry land, and can be accessed from either the DIVE mode or TIME mode.

When accessed from DIVE mode, toggle between the alternative displays by pressing the UP/DOWN buttons.

4.3.1. Compass display

The Suunto Cobra3 displays the compass as a graphical representation of a compass rose. The rose displays the cardinal and half cardinal points, in addition to which, the current bearing is also displayed numerically.

4.3.2. Locking a bearing

A bearing can be locked to help you follow a selected course, and directional arrows point towards the locked bearing. The last locked bearing is stored and is available the next time the compass is activated. In the DIVE mode the locked bearings are also stored in the log.

The Suunto Cobra3 also provides help for navigating square and triangular patterns, as well as navigating a return heading. This is made possible by following graphical symbols in the center of the compass display:

Table 4.1. Locked bearing symbols

Symbol	Explanation	
14	You are traveling towards the locked bearing	
	You are 90 (or 270) degrees from the locked bearing	

Symbol	Explanation
	You are 180 degrees from the locked bearing
	You are 120 (or 240) degrees from the locked bearing

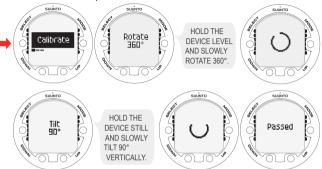
4.3.3. Compass settings

You can define the compass settings (Calibration, Declination and Timeout) in the COMPASS mode:

Calibration

Because of changes in the surrounding magnetic field, the Suunto Cobra3 electronic compass occasionally needs to be re-calibrated. During the calibration process, the compass adjusts itself to the surrounding magnetic field and to tilting. As a basic rule, you should calibrate the compass whenever it does not seem to operate properly, or after replacing the dive computer's battery.

First the compass is level calibrated and after a successful level calibration, the compass is tilt calibrated. The tilt calibration compensates for tilting the compass in any direction in angles of up to 45°.


Strong electromagnetic fields, such as power lines, stereo speakers, and magnets can affect the compass calibration. Therefore, it is advisable to calibrate the compass if your Suunto Cobra3 has been exposed to these fields.

When traveling overseas, it is recommended that you recalibrate the compass at the new location before using it.

NOTE

Remember to hold the Suunto Cobra3 level during the level calibration process. A deviation of \pm 5° is allowed in any direction from the horizontal plane during level calibration.

To calibrate the compass:

If the calibration fails several times in a row, it is possible that you are in an area with sources of magnetism, such as large metal objects, power lines or electric appliances. Move to another location and try to calibrate the compass again. If the calibration continues to fail, contact an authorized Suunto service center.

Declination

You can compensate for the difference between true north and magnetic north by adjusting the compass declination. The declination can be found, for example, from sea charts or topographic maps of the local area.

Time-out

You can set the compass time-out to 1, 3, or 5 minutes. After the set time has passed from the latest button press, the dive computer returns to the TIME or DIVE mode from the COMPASS mode.

You can exit the COMPASS mode also by long pressing the SELECT button.

5. BEFORE DIVING

Do not attempt to use the dive computer without reading this user's guide in its entirety, including all the warnings. Make sure that you fully understand the use, displays and limitations of the instrument. If you have any questions about the manual or the dive computer, contact your SUUNTO dealer before diving with the dive computer. Always remember that YOU ARE RESPONSIBLE FOR YOUR OWN SAFETY!

When used properly, Suunto Cobra3 is an outstanding tool for assisting properly trained, certified divers in planning and executing sport dives. It is NOT A SUBSTITUTE FOR CERTIFIED SCUBA INSTRUCTION, including training in the principles of decompression.

WARNING

Diving with gas mixtures exposes you to risks that are different from those associated with diving with standard air. These risks are not obvious, and require training to understand and avoid. Risks include possible serious injury or death.

Do not attempt to dive with any gas mix other than standard air without first receiving certified training in this specialty.

5.1. The Suunto RGBM/Deep Stop Algorithm

Suunto's Reduced Gradient Bubble Model (RGBM), utilized in the Suunto Cobra3, predicts both dissolved and free gas in the blood and tissues of divers. It is a significant advance on the classic Haldane models, which do not predict free gas. The advantage of Suunto RGBM is additional safety through its ability to adapt to a variety of situations and dive profiles.

The Suunto Cobra3 uses traditional recommended safety stops as well as deep stops.

YOU ARE ADVISED TO MAKE A DEEPSTOP AT 18 M. THE SECOND INDICATOR SHOWS THAT YOU HAVE 110 SECONDS LEFT OF YOUR DEEPSTOP.

In order to optimize the response to different increased risk situations, an additional category of stop, referred to as a Mandatory Safety Stop, has been introduced. The combination of stop types depends on the user settings and the specific dive situation. To get the most from the RGBM safety benefits, refer to *Section 10.2. RGBM*.

5.2. Emergency ascents

In the unlikely event that the dive computer malfunctions during a dive, follow the emergency procedures provided by your certified dive training agency or, alternatively, follow these steps:

- 1. Assess the situation calmly and then move promptly to less than 18 m/60 ft.
- 2. At 18 m/60 ft, slow down your ascent rate to 10 m/33 ft per minute and move to a depth between 3 and 6 m/10 and 20 ft.
- 3. Stay there for as long as your air supply will safely allow. After reaching the surface, do not dive for at least 24 hours.

5.3. Dive computer limitations

While the dive computer is based on current decompression research and technology, you must realize that the computer cannot monitor the actual physiological functions of an individual diver. All decompression schedules currently known to the authors, including the U.S. Navy Tables, are based on theoretical mathematical models, which are intended to serve as a guide to reduce the probability of decompression illness.

5.4. Audible and visual alarms

The dive computer has audible and visual alarms that advise when important limits are approached or that prompt you to acknowledge preset alarms. The table below describes the different alarms and their meanings.

The **visual information** on the dive computer display is shown during the alarm breaks in order to save battery.

Table 5.1. Audible and visual alarm types

Alarm type	Alarm reason
Short single beep	Dive computer is activated.
	Dive computer automatically returns to the TIME mode.

Alarm type	Alarm reason
Three beeps with a three second interval	Cylinder pressure reaches 50 bar/725 psi. The cylinder pressure display will start to blink.
	Cylinder pressure reaches the selected alarm pressure.
	Calculated remaining air time reaches zero.
Three beeps with a three second interval and activated backlight	No-decompression dive turns into a decompression stop dive. An arrow pointing upwards and the blinking ascent warning ASC TIME will appear.
Continuous beeps and activated backlight	Maximum allowed ascent rate, 10 m per min/33 ft per min, is exceeded. Ascent rate bar graph blinks and STOP warning appears.
	Decompression ceiling depth is exceeded. An error warning Er and a downward pointing arrow appear. You should immediately descend to, or below, the ceiling. The instrument will otherwise enter a permanent Error mode within three minutes, indicated by a permanent Er.

You can set alarms for maximum depth, dive time and tank pressure. For more information, refer to Section 5.7. DIVE mode settings and Section 4.1. TIME mode settings.

Table 5.2. Preset alarm types

Alarm type	Alarm reason
Continuous beep series for 24 seconds Maximum depth blinks as long as the current depth value exceeds the preset value.	Preset maximum depth has been exceeded.
Continuous beep series for 24 seconds or until any button is pressed. Dive time blinks for one minute.	Preset dive time has been exceeded.
Continuous beep series for 24 seconds or until any button is pressed. Current time blinks for one minute	Preset alarm time is reached.

Table 5.3. Oxygen alarms in NITROX mode

Alarm type	Alarm reason
Continuous beeps for 3 minutes and activated back-light	Set oxygen partial pressure limit is exceeded. The alternative display is replaced with a current blinking PO_2 value. You should immediately ascend above the PO_2 depth limit.
	OLF value reaches 80%. The OLF value will start to blink.
	OLF value reaches 100%. The OLF value will blink.

NOTE

When the backlight is turned OFF, it does not illuminate when an alarm is activated.

WARNING

WHEN THE OXYGEN LIMIT FRACTION INDICATES THAT THE MAXIMUM LIMIT IS REACHED, YOU MUST IMMEDIATELY TAKE ACTION TO REDUCE OXYGEN EXPOSURE. Failure to take action to reduce oxygen exposure after the warning is given can rapidly increase the risk of oxygen toxicity, injury, or death.

5.5. Error conditions

The dive computer has warning indicators that alert you to react to certain situations that would significantly increase the risk of DCI. If you do not respond to its warnings, the dive computer will enter an Error mode, indicating that the risk of DCI has greatly increased. If you understand the dive computer and operate it sensibly, it is very unlikely you will ever put the instrument into the Error mode.

Omitted decompression

The Error mode results from omitted decompression, for example, when you stay above the ceiling for more than three minutes. During this three-minute period the Er warning is shown and the audible alarm beeps. After this, the dive computer enters a permanent Error mode. The instrument will continue to function normally if you descend below the ceiling within this three-minute period.

When the dive computer is in the permanent Error mode, only the Er warning is shown in the center window. The dive computer does not show times for ascent or stops. However, all the other displays function as before to provide information for ascent. You must immediately ascend to a depth of 3 to 6 m/10 to 20 ft and remain at this depth until air supply limitations require you to surface.

After surfacing, you should not dive for a minimum of 48 hours. During the permanent Error mode, the Er text is displayed in the center window and the planning mode is disabled.

5.6. Air integration

The Cobra3 can be attached to the high-pressure port of the regulator, enabling you to receive cylinder pressure and remaining air time data.

5.6.1. Connecting Suunto Cobra3 to a regulator

When purchasing the Suunto Cobra3, we strongly recommend that you have your Suunto representative attach it to the first stage of your regulator.

However, if you decide to attach it yourself, follow the steps outlined below:

- 1. Remove the high pressure (HP) port plug on the first stage of your regulator using an appropriate tool.
- Thread the high pressure hose of the Suunto Cobra3 into the HP port of your regulator with your fingers. Tighten the hose fitting with a 16 mm (5/8") wrench. DO NOT OVERTIGHTEN!
- Attach the regulator to the scuba cylinder and slowly open the valve. Check for leaks by submerging the regulator first stage in water. If leaks are detected, check the condition of the O-ring and sealing surfaces.

5.7. DIVE mode settings

Suunto Cobra3 has several user-definable functions, as well as depth and time-related alarms that you can set according to your personal preferences. The DIVE mode settings are dependent on the dive submode chosen (AIR, NITROX, GAUGE), so that, for example, nitrox settings are only available in the NITROX submode.

The figure below shows how to enter the DIVE mode settings menu.

Some settings cannot be changed until five (5) minutes has elapsed after the dive.

TOGGLE BETWEEN DIVE SETTINGS

5.7.1. Setting the depth alarm

The depth alarm is factory-set to 30 m/100 ft, but you can adjust it according to your personal preference, or switch it off altogether. The depth range can be set from 3 m to 100 m/9 ft to 328 ft.

5.7.2. Setting the dive-time alarm

The Dive Time Alarm setting can be activated and used for several purposes to add to your diving safety.

鄞

NOTE

With a range of 1–999 minutes, the alarm can be set to your planned bottom time, for example.

5.7.3. Setting the nitrox values

If set to the NITROX mode, the correct oxygen percentage of the gas in your cylinder (and additional gases) must always be entered into the computer to ensure correct nitrogen and oxygen calculations. In addition, the oxygen partial pressure limit must be set. When in the NITROX setting mode, the maximum operating depth (MOD), based on the chosen setting, will also be displayed.

Settings for an additional mix (Mix2) are made similarly, but with the additional selection of "ON" or "OFF".

In order to minimize the risk of error during a dive, it is highly recommended that the mixes are set in the proper order. This means that as the mix number rises, so does oxygen content, and this is the order they are usually used during the dive. Before a dive, only enable the mixes you actually have available, and remember to check the set values to ensure they are correct.

The default oxygen percentage (O $_2$ %) setting is 21% (air) and oxygen partial pressure (PO $_2$) setting 1.4 bar.

After entering values for Mix1, you can enable/disable and set an additional gas mix-Mix2.

If MIX2 is set ON, settings for all mixes are stored until changed. If MIX2 has an oxygen content of 22% or greater, settings for all mixes are stored until changed.

5.7.4. Setting the personal/altitude adjustments

The current Altitude and Personal Adjustment settings are displayed in the startup screen when entering the DIVE mode. If the mode does not match the altitude or personal conditions (refer to Section 5.8.4. Diving at altitude and Section 5.8.5. Personal adjustments), it is imperative that you enter the correct selection before diving. Use Altitude Adjustment to select the correct altitude and use Personal Adjustment to add an extra level of conservatism.

5.7.5. Setting the sample rate

The Sample Rate setting controls how often the depth, tank pressure (if enabled), and water temperature is stored in the memory.

You can set the dive profile sample rate to 1, 10, 20, 30, or 60 seconds. The factory default setting is 20 seconds.

5.7.6. Setting the Safety Stops/deep stops

In the AIR mode in the Deep Stops setting mode, the Deep stops can be set "ON" or "OFF" depending on whether the Deep stops are used or not.

The Deep Stop setting allows you to view deep stops. If deep stops are set OFF, only the traditional Safety Stop calculation is used.

5.7.7. Setting the RGBM values

For certain divers and diving conditions, it may be desirable to set the attenuated RGBM mode. The selection is displayed during the DIVE mode startup. The options are full RGBM effects (100%), and attenuated RGBM (50%).

5.7.8. Setting the units

In the Unit settings you are able to choose between metric (meters/Celsius/bar) and imperial (feet/Fahrenheit/psi) units.

5.7.9. Setting the tank pressure alarm

The tank pressure alarm can be set "ON" or "OFF" and in the range of 10–200 bar. The alarm is the secondary cylinder pressure alarm point. The alarm is activated when the tank pressure drops below the set limit. You can acknowledge this alarm.

The 50 bar/700 psi alarm, however, is fixed and cannot be changed. You cannot acknowledge this alarm.

5.8. Activation and pre-checks

This section describes how to activate the DIVE mode and explains the pre-checks that it is highly recommended you perform before you get into the water.

5.8.1. Accessing DIVE mode

The Suunto Cobra3 has three diving modes: AIR mode for diving with standard air only, NITROX mode for diving with oxygen enriched mixtures, and GAUGE mode for use as a bottom timer and for freediving.

The OFF mode disables the DIVE mode, and allows the TIME mode to be used underwater. The chosen dive mode is displayed when the DIVE mode is accessed, and you can toggle between the submodes by pressing the UP/DOWN buttons.

5.8.2. DIVE mode activation

The dive computer activates automatically when submerged deeper than 0.5 m/1.5 ft. However, it is necessary to activate the DIVE mode BEFORE diving to check the altitude and personal adjustment settings, battery condition, oxygen settings, and so on.

After activation, all graphical display elements are turned ON, and the backlight and the beep are activated. After this, the selected altitude and personal settings are displayed, as well as the RGBM and Deep Stop status. A few seconds later the battery power indicator is shown.

At this time, perform your pre-checks, and ensure that:

- the instrument operates in the correct mode and provides a complete display (AIR/NITROX/GAUGE mode)
- · the battery level is ok.
- · the altitude, personal adjustment, Deep stops, and RGBM settings are correct.
- · the instrument displays correct units of measurement (Metric/Imperial).
- the instrument displays the correct temperature and depth (0.0 m/0 ft).
- the alarm beeps

And, if set to NITROX mode, ensure that:

- the correct number of mixes is set and that the oxygen percentages are adjusted according to the measured nitrox blends in your cylinders
- the correct oxygen percentages are adjusted according to the measured oxygen percentages in your cylinders
- the oxygen partial pressure limits are set correctly

For more information on the NITROX mode, please refer to Section 6.2. Diving in NI-TROX mode (DIVE Nitrox).

The dive computer is now ready for diving.

5.8.3. Battery power indication

Temperature or internal oxidation of the battery affect the battery voltage. If the instrument is stored for a long period, or used in cold temperatures, the low battery warning may be displayed even though the battery has enough capacity. In these cases, reenter DIVE mode to receive the battery power indication.

After the battery check, the low battery warning is indicated by the battery symbol.

If the battery symbol is displayed in the Surface mode, or if the display is faded or weak, the battery may be too low to operate the dive computer, and battery replacement is recommended.

For safety reasons, the backlight cannot be activated when the low battery warning is indicated by the battery symbol.

5.8.4. Diving at altitude

The dive computer can be adjusted both for diving at altitude and also to increase the conservatism of the mathematical nitrogen model.

When programming the instrument for the correct altitude, you need to select the correct Altitude Adjustment settings according to *Table 5.4, Altitude Adjustment settings*. The dive computer will adjust its mathematical model according to the entered altitude setting, giving shorter no-decompression times at higher altitudes.

For more information, see Section 10.2.3. Altitude diving.

Table 5.4. Altitude Adjustment settings

Alt. value	adjustment	Altitude range
A0		0–300 m / 0–1000 ft
A1		300–1500 m / 1000–5000 ft
A2		1500–3000 m / 5000–10 000 ft

Section 5.7.4. Setting the personal/altitude adjustments describes how the Altitude value is set.

Traveling to a higher elevation can temporarily cause a change in the equilibrium of dissolved nitrogen in the body. It is recommended that you acclimatize to the new altitude by waiting at least three (3) hours before diving.

5.8.5. Personal adjustments

There are personal factors that can affect your susceptibility to DCI, which you can predict in advance, and input into the decompression model. Such factors vary between divers and also for the same diver from one day to another. There is available a three-step Personal Adjustment setting if a more conservative dive plan is desired, and a two-step adjustment for RGBM effect on repetitive dives for very experienced divers.

The personal factors which tend to increase the possibility of DCI include, but are not limited to:

- cold exposure —water temperature less than 20 °C/68 °F
- · below average physical fitness level
- fatigue
- dehydration
- · previous history of DCI
- stress
- · obesity
- · patent foramen ovale (PFO)
- · exercise on or after dive

This feature is used to adjust the computer to be more conservative, according to personal preference, by entering the suitable Personal Adjustment setting with the help of *Table 5.5, Personal Adjustment settings*. In ideal conditions, retain the default setting, P0. If conditions are more difficult, or any of the factors which tend to increase the possibility of DCI exist, select P1, or even the most conservative P2. The dive computer then adjusts its mathematical model according to the entered Personal Adjustment setting, giving shorter no-decompression times (refer to *Section 10.2.2. No-decompression limits for air, Table 10.1, No-decompression time limits for various depths (m)* and *Table 10.2, No-decompression time limits for various depths (ft)*).

Table 5.5. Personal Adjustment settings

Personal adjust- ment value	Condition	Desired tables
P0	Ideal conditions	Default
P1	Some risk factors or conditions exist	Progressively more conservative
P2	Several risk factors or conditions exist	

The Suunto Cobra3 also allows experienced divers who are willing to accept a greater level of risk to adjust the RGBM model. The default setting is 100%, which gives full RGBM effect. Suunto strongly advises you to use full RGBM effect. Statistically, very experienced divers have less incidents with DCI. The reason for this is unknown, but it is possible that some level of physiological and/or psychological accommodation can take place when you are very experienced as a diver. Thus, for certain divers and diving conditions, it may be desirable to set attenuated (50%) RGBM mode. for more information, refer to *Table 5.6*, *RGBM model settings*.

Table 5.6. RGBM model settings

RGBM setting	Desired Tables	Effect
100%	Standard Suunto RGBM model (Default)	Full RGBM effects

RGBM setting	Desired Tables	Effect	
50%	Attenuated RGBM model	Smaller RGBM effects, higher risk!	

5.9. Safety Stops

Safety Stops are widely considered good diving practice for recreational diving, and are an integral part of most dive tables. The reasons for performing a Safety Stop include: reducing sub-clinical DCI, microbubble reduction, ascent control, and orientation before surfacing.

The Suunto Cobra3 displays two different types of Safety Stops: Recommended Safety Stop and Mandatory Safety Stop.

5.9.1. Recommended Safety Stops

With every dive over 10 meters, there is a three-minute countdown for the Recommended Safety Stop, to be taken in the 3–6 m/10–20 ft range. This is shown with the STOP sign and a three-minute countdown in the center window instead of the no-decompression time.

The Recommended Safety Stop, as the name implies, is recommended. If it is ignored, there is no penalty applied to the following surface intervals and dives.

5.9.2. Mandatory Safety Stops

When the ascent rate exceeds 10 m/33 ft per minute continuously for more than five (5) seconds, the microbubble build-up is predicted to be more than is allowed for in the decompression model. The Suunto RGBM calculation model responds to this by adding a Mandatory Safety Stop to the dive. The time of this Mandatory Safety Stop depends on the severity of the ascent rate excess.

The STOP sign is shown in the display and when you reach the depth zone between 6 m and 3 m/20 ft and 10 ft, the CEILING label, ceiling depth, and the calculated Safety Stop time also appear in the display. Wait until the Mandatory Safety Stop warning disappears. The total length of the Mandatory Safety Stop time depends on the seriousness of the ascent rate violation.

WHEN CEILING AND STOP ARE DISPLAYED, MAKE A ONE MINUTE MANDATORY SAFETY STOP IN THE DEPTH ZONE BETWEEN 6 M AND 3 M.

You must not ascend shallower than 3 m/10 ft with the Mandatory Safety Stop warning on. If you ascend above the Mandatory Safety Stop ceiling, a downward pointing arrow will appear and a continuous beeping starts. You should immediately descend to, or below, the Mandatory Safety Stop ceiling depth. If you correct this situation at any time during the dive, there are no effects on the decompression calculations for future dives.

WHEN CEILING AND STOP ARE DISPLAYED, IMMEDIATELY (WITHIN 3 MINUTES) DESCEND TO OR BELOW CEILING.

If you continue to violate the Mandatory Safety Stop, the tissue calculation model is affected and the dive computer shortens the available no-decompression time for your next dive. In this situation, it is recommended that you prolong your surface interval time before your next dive.

5.10. Deep stops

Deep stops are safety stops that occur deeper than traditional stops, with the purpose of minimizing microbubble formation and excitation.

The Suunto RGBM model calculates deep stops iteratively, placing the first stop about halfway between the maximum depth and the ceiling depth. After the first Deep stop is completed, another Deep stop will be prompted halfway to the ceiling, and so on until the ceiling depth is reached.

The Deep Stop length can be set to 1 or 2 minutes.

6. DIVING

This section contains instructions on how to operate the dive computer and interpret its displays. The dive computer is easy to use and read. Each display shows only the data relevant to that specific diving mode.

6.1. Diving in the AIR mode (DIVE Air)

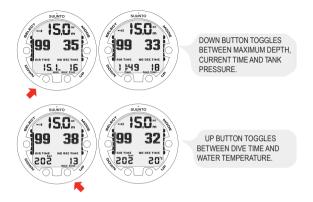
This section contains information on diving with standard air. To activate the DIVE Air mode, please refer to Section 5.8.1. Accessing DIVE mode.

DIVE HAS JUST BEGUN AND AVAILABLE NO-DECOMPRESSION TIME IS OVER 99 MINUTES SO NO VALUE IS DISPLAYED.

The dive computer will remain in the SURFACE mode at depths less than 1.2 m/4 ft. At depths greater than 1.2 m/4 ft the instrument will go into the DIVE mode automatically. However, it is recommended that you activate the SURFACE mode manually before entering the water in order to perform the necessary dive pre-checks.

6.1.1. Basic dive data

During a No-decompression dive, the following information is displayed:


- your present depth in meters/feet
- the available no-decompression time in minutes as NO DEC TIME
- the ascent rate presented as a bar graph on the right side
- the Diver Attention Symbol if surface interval should be prolonged (see Table 7.1, Alarms)
- · the Deep Stop depth, if activated
- · the Remaining air time

DIVE DISPLAY - PRESENT DEPTH IS 15 M,
NO-DECOMPRESSION STOP TIME LIMIT IS 38 MIN.
ELAPSED DIVE TIME IS 13 MIN. 99 MINUTES OF
REMAINING AIR TIME AND 202 BAR TANK PRESSURE.

Alternative displays, by pressing the UP/DOWN buttons, show:

- · the elapsed dive time in minutes, shown as DIVE TIME
- the water temperature in °C/°F
- · the maximum depth during this dive in meters/feet, indicated as MAX
- · the tank pressure
- · the current time, shown as TIME

6.1.2. Bookmark

It is possible to record bookmarks in the profile memory during a dive. These bookmarks are displayed when scrolling the profile memory on the display. The bookmarks are also shown as annotations in the downloadable Suunto DM4 with Movescount software. The bookmark logs the depth, time, and water temperature, as well as compass heading (if the compass has been enabled).

To make a bookmark in the profile memory during a dive, press the SELECT button. A brief confirmation will be given.

6.1.3. Tank pressure data

The pressure of your scuba cylinder in bars (or psi) is shown digitally in the lower left corner of the alternative display. Whenever you start a dive, the remaining air time calculation begins. After 30–60 seconds (sometimes more, depending on your air consumption), the first estimation of remaining air time will be shown in the left center window of the display. The calculation is always based on the actual pressure drop in your cylinder and will automatically adapt to your cylinder size and current air consumption.

The change in your air consumption is based on constant one second interval pressure measurements over 30–60 second periods. An increase in air consumption influences the remaining air time rapidly, while a drop in air consumption increases the air time slowly. In this way, an over optimistic air time estimation, caused by a temporary drop in air consumption, is avoided.

The remaining air time calculation includes a 35 bar/500 psi safety reserve. This means that when the instrument shows the air time to be zero, there is still about 35 bar/500 psi of pressure left in your cylinder, depending on your air consumption rate. With a high consumption rate, the limit will be closer to 50 bar/700 psi and with a low rate closer to 35 bar/500 psi.

Filling your BC affects the air time calculation due to the temporary increase in air consumption.

A change of temperature will affect the cylinder pressure and consequently the air time calculation.

Low Air Pressure Warnings

The dive computer will warn you with three (3) audible double beeps and a blinking pressure display when the cylinder pressure reaches 50 bar/700 psi.

Three (3) double beeps are also heard when the cylinder pressure goes down to the user-selected alarm pressure, and when the remaining air time reaches zero.

6.1.4. Ascent rate indicator

The ascent rate is shown graphically along the right hand side. When the maximum allowed ascent rate is exceeded, the lower segments start to blink with the top segment staying solid, indicating that the maximum ascent rate has been exceeded continuously or that the current ascent rate is significantly above the allowed rate.

Continuous ascent rate violations will result in Mandatory Safety Stops. When Recommended Deep Stop is enabled, the length is indicated in seconds.

ACTIVATED BACKLIGHT,
ALARM AND A BLINKING ASCENT
RATE BAR GRAPH INDICATE YOU
ARE ASCENDING FASTER THAN 10
M/MIN. YOU ARE ADVISED TO
MAKE A MANDATORY SAFETY
STOP WHEN YOU REACH A
DEPTH OF 6 M.

WARNING

DO NOT EXCEED THE MAXIMUM ASCENT RATE! Rapid ascents increase the risk of injury. You should always make the Mandatory and Recommended Safety Stops after you have exceeded the maximum recommended ascent rate. If this Mandatory Safety Stop is not completed, the decompression model will penalize your next dive(s).

6.1.5. Safety Stops

A three (3) minute Recommended Safety Stop is prompted after every dive to over 10 m.

6.1.6. Decompression dives

When your NO DEC TIME becomes zero, your dive changes into a decompression dive. Therefore, you must perform one or more decompression stops on your way to the surface. The NO DEC TIME on your display will be replaced by an ASC TIME, and a CEILING notation will appear. An upward pointing arrow will also prompt you to start your ascent.

If you exceed the no-decompression limits on a dive, the dive computer will provide the decompression information required for ascent. After this, the instrument will continue to provide subsequent interval and repetitive dive information.

Rather than requiring you to make stops at fixed depths, the dive computer lets you decompress within a range of depths (continuous decompression).

The ascent time (ASC TIME) is the minimum amount of time needed to reach the surface in a decompression dive. It includes:

- the time needed at the deep stop
- the time needed to ascend to the ceiling at an ascent rate of 10 m/33 ft per minute.
 The ceiling is the shallowest depth to which you should ascend.
- · the time needed at the ceiling
- the time needed at the Mandatory Safety Stop (if any)
- the time needed to reach the surface after the mandatory decompression dives have been completed

NOTE

In addition, there may also be Mandatory Safety Stops which are not displayed in ASC TIME.

WARNING

YOUR ACTUAL ASCENT TIME MAY BE LONGER THAN DIS-PLAYED BY THE INSTRUMENT! The ascent time will increase if you:

- remain at depth
- ascend slower than 10 m/33 ft per minute or
- make your decompression stop deeper than at the ceiling

These factors will also increase the amount of air required to reach the surface.

Ceiling, ceiling zone, floor and decompression range

When in decompression, it is important that you understand the meaning of ceiling, floor, and decompression range.

- The ceiling is the shallowest depth to which you should ascend when in decompression. At this depth, or below, you must perform all stops.
- The ceiling zone is the optimum decompression stop zone. It is the zone between the minimum ceiling and 1.2 m/4 ft below the minimum ceiling.
- The floor is the deepest depth at which the decompression stop time will not increase. Decompression will start when you pass this depth during your ascent.
- The decompression range is the depth range between the ceiling and floor. Within
 this range, decompression takes place. However, it is important to remember that
 the decompression will be very slow at, or close to, the floor.

▼	CEILING	
X	3m / 10ft	
	6m / 18ft	
A	FLOOR	

The depth of the ceiling and floor depends on your dive profile. The ceiling depth will be fairly shallow when you enter the decompression mode, but if you remain at depth, it will move downward and the ascent time will increase. Likewise, the floor and ceiling may change upwards while you are decompressing.

When conditions are rough, it may be difficult to maintain a constant depth near the surface. In such cases, it is more manageable to maintain an additional distance below the ceiling, to ensure that the waves do not lift you above the ceiling. Suunto recommends that decompression takes place deeper than 4 m/13 ft, even if the indicated ceiling is shallower.

It will take more time and more air to decompress below the ceiling than at the ceiling.

WARNING

NEVER ASCEND ABOVE THE CEILING! You must not ascend above the ceiling during your decompression. In order to avoid doing so by accident, you should stay somewhat below the ceiling.

Display below the floor

The blinking ASC TIME sign and an upward pointing arrow indicate that you are below the floor. You should start your ascent immediately. The ceiling depth is shown on the left side, and the minimum total ascent time on the right side of the center window. Below is an example of a decompression dive without Deep Stops, below the floor.

UPWARD POINTING ARROW, BLINKING ASC TIME AND AN ALARM TELL YOU TO ASCEND. MINIMUM TOTAL ASCENT TIME INCLUDING MANDATORY SAFETY STOP IS 15 MINUTES. CEILING IS AT 3 M.

Display above the floor

When you ascend above the floor, the ASC TIME sign stops blinking and the upward pointing arrow disappears. Below is an example of a decompression dive above the floor.

UPWARD POINTING ARROW HAS DISAPPEARED AND ASC TIME LABEL HAS STOPPED BLINKING, MEANING YOU ARE IN THE DECOMPRESSION RANGE. Decompression will now begin, but is very slow. Therefore, you should continue your ascent.

Display at the ceiling zone

When you reach the ceiling zone, the display will show you two arrows pointing at each other (the "hour glass" icon). Below is an example of a decompression dive at the ceiling zone.

TWO ARROWS POINT AT EACH OTHER
"HOUR GLASS". YOU ARE IN THE OPTIMUM CEILING
ZONE AT 3 M. AND YOUR MINIMUM ASCENT TIME IS
15 MINUTES.

During the decompression stop, ASC TIME will count down towards zero. When the ceiling moves upwards, you can ascend to the new ceiling. You may surface only after the ASC TIME and CEILING labels have disappeared, which means that the decompression stop and any Mandatory Safety Stop have been completed. You are advised, however, to stay until the STOP sign has also disappeared. This indicates that the three (3) minute Recommended Safety Stop has also been completed.

Display above the ceiling

If you ascend above the ceiling during a decompression stop, a downward pointing arrow will appear and a continuous beeping starts.

DECOMPRESSION DIVE, ABOVE CEILING.
NOTE DOWNWARD POINTING ARROW, ER WARNING
AND ALARM. YOU SHOULD IMMEDIATLY (WITHIN
3 MINUTES) DES CEND TO OR BELOW CEILING.

In addition, an Error warning (Er) reminds you that you have only three (3) minutes to correct the situation. You must immediately descend to, or below, the ceiling.

If you continue to violate the decompression, the dive computer will go into a permanent Error Mode. In this mode, the instrument can only be used as a depth gauge and timer. You must not dive again for at least 48 hours (refer to Section 5.5. Error conditions).

6.2. Diving in NITROX mode (DIVE Nitrox)

The NITROX mode (DIVE Nitrox) is the second dive mode available in Suunto Cobra3 and is used when using oxygen-enriched gas mixtures.

6.2.1. Before diving in the NITROX mode

If set to the NITROX mode, the correct oxygen percentage of the gas in your cylinder must always be entered into the computer to ensure correct nitrogen and oxygen calculations. The dive computer adjusts its mathematical nitrogen and oxygen calculation models accordingly. The dive computer will not accept fractional percentage values of oxygen concentration. Do not round up fractional percentages. For example, 31.8% oxygen should be entered as 31%. Rounding up will cause nitrogen percentages

to be understated and will affect decompression calculations. If you want to adjust the computer to provide more conservative calculations, use the personal adjustment feature to affect decompression calculations, or reduce the PO_2 setting to affect oxygen exposure according to the entered $\mathsf{O}_2\%$ and PO_2 values. Calculations based on nitrox use result in longer no-decompression times and shallower maximum depths than diving with air.

As a safety precaution, the oxygen calculations in the computer are made with an oxygen percentage of 1% + set $O_2\%$.

When the dive computer is set in NITROX mode, the Dive Planning mode calculates using the $O_2\%$ and PO_2 values that are currently in the computer.

To set the nitrox mixes, refer to Section 5.7.3. Setting the nitrox values .

Default nitrox settings

In the NITROX mode, the Suunto Cobra3 allows you to set 1 or 2 nitrox mixes containing 21–99% oxygen.

In the NITROX mode, the default setting for Mix1 is standard air (21% O_2). It remains in this setting until the O_2 % is adjusted to any other percentage of oxygen (22%–99%). The default setting for maximum oxygen partial pressure is 1.4 bar, however you are able to set it in the range of 0.5–1.6 bar.

Mix2 is set to OFF by default. To set Mix2, refer to Section 6.2.4. Gas change and multiple breathing gas mixes. Oxygen percentages and maximum oxygen partial pressures for Mix2 are stored permanently.

6.2.2. Oxygen displays

When the NITROX mode is activated, the display will show the information in the figure below. In the NITROX mode, the maximum operational depth is calculated based on set O_2 % and PO_2 values.

If set to the NITROX mode, the Suunto Cobra3 will additionally show on the alternative display:

- the oxygen percentage, labeled O₂%
- the set oxygen partial pressure limit, labeled PO₂
- the current oxygen toxicity exposure, labeled OLF%
- maximum depth
- current time
- · water temperature
- dive time
- · tank pressure

6.2.3. Oxygen limit fraction (OLF%)

If set to the NITROX mode, in addition to tracking the diver's exposure to nitrogen, the instrument tracks the exposure to oxygen. These calculations are treated as entirely separate functions.

The dive computer calculates separately for Central Nervous System oxygen toxicity (CNS) and Pulmonary Oxygen toxicity, the latter measured by the addition of Oxygen Toxicity Units (OTU). Both fractions are scaled so that the maximum tolerated exposure for each is expressed as 100%.

The Oxygen Limit Fraction (OLF%) displays only the value of the higher of the two calculations. The oxygen toxicity calculations are based on the factors listed in *Section 10.3. Oxygen exposure*.

6.2.4. Gas change and multiple breathing gas mixes

The Suunto Cobra3 allows gas changes to enabled gas mixes during the dive. Gas changes are made by following the procedure below:

Mix number, $O_2\%$ and PO_2 for the mixes are shown when scrolling. If the set PO_2 limit is exceeded, it will be shown with the PO_2 value blinking. The dive computer does not allow you to change to a gas whose set PO_2 is exceeded. In such a case, the mix is shown but cannot be selected.

If no button is pressed in 15 seconds, the dive computer will go back to the dive display without changing the gas mix. Upon ascent, the computer prompts you to change gas when the PO_2 level you have set for the next mix allows a gas change. The prompt is an audible 3 beeps and the current O_2 mix starts to blink.

6.3. Diving in the GAUGE mode (DIVE Gauge)

If set to the GAUGE mode, the dive computer can be used as a bottom timer.

In the GAUGE mode, the total dive time is always displayed in minutes in the lower right corner. In addition, a Dive Timer in the center window displays time in minutes and seconds. The center window Dive Timer is activated at the start of the dive and it can be reset during the dive and used as a stopwatch by pressing the SELECT button.

BY PRESSING THE SELECT BUTTON DURING A DIVE, A BOOKMARK IS WRITTEN IN THE PROFILE MEMORY, THE DIVE TIMER IS RESET, AND THE PREVIOUSLY-TIMED INTERVAL IS DISPLAYED BELOW.

№ NOTE	The GAUGE mode does not provide decompression information.

✓ NOTE	There is no ascent rate monitoring in the GAUGE mode.

If you dive with the GAUGE mode, it is not possible to change between the modes before the no fly time has counted down.

7. AFTER DIVING

Once back at the surface, Suunto Cobra3 continues to provide post-dive safety information and alarms. Calculations to enable repetitive dive planning also help to maximize diver safety.

Table 7.1. Alarms

Symbol on display	Indication
Δ	Diver Attention Symbol - Extend Surface Interval
Er	Violated Decompression Ceiling or Too Long Bottom Time
▶ NO	Do Not Fly Symbol

7.1. Surface interval

An ascent to any depth shallower than 1.2 m/4 ft will cause the DIVE display to be replaced by the SURFACE display:

IT IS 15 MINUTES SINCE YOU SURFACED FROM A 6-MINUTE DIVE. THE PRESENT DEPTH IS 0.00 M. THE AIRPLANE SYMBOL AND NO-FLY VALUE INDICATE THAT YOU SHOULD NOT FLY FOR 20 HOURS.

Or, in the alternative displays, the following information will be shown:

- · maximum depth of last dive in meters/feet
- · dive time of last dive in minutes, shown as DIVE TIME
- · the current time, shown as TIME
- the current temperature in °C/°F
- · tank pressure

If set to NITROX mode, the following information will also be shown:

- the oxygen percentage labeled O₂%
- the oxygen partial pressure labeled PO₂
- the current oxygen toxicity exposure labeled OLF%

7.2. Dive numbering

Several repetitive dives are considered to belong to the same repetitive dive series when the dive computer has not counted the no-fly time to zero. Within each series, the dives are given individual numbers. The first dive of the series will be numbered as DIVE 1, the second as DIVE 2, the third as DIVE 3, and so on.

If you start a new dive with less than five (5) minutes of surface interval time, the dive computer interprets this as a continuation of the previous dive and the dives are considered to be the same. The diving display will return, the dive number will remain unchanged, and the dive time will begin where it left off. After five (5) minutes on the surface, subsequent dives are, by definition, repetitive. The dive counter displayed in the Planning mode will increment to the next number if another dive is made.

7.3. Repetitive dive planning

The Suunto Cobra3 includes a dive planner that allows you to review the no-decompression limits on a subsequent dive, taking the residual nitrogen loading of previous dives into consideration. The DIVE PLANNING mode is explained in *Section 7.5.1*. *DIVE PLANNING mode (PLAN NoDec)*.

7.4. Flying after diving

In the DIVE mode, the no-fly time is displayed in the center window next to the airplane image. In the TIME mode, the airplane image is shown in the top left corner. Flying or traveling to a higher altitude should be avoided at any time when the computer is counting down the no-fly time.

The no-fly time is always at least 12 hours, or equivalent to the so-called desaturation time (if longer than 12 hours). For desaturation times lower than 70 minutes, no no-fly time is given.

In the Permanent Error mode and GAUGE mode, the no-fly time is 48 hours.

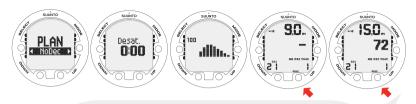
The Divers Alert Network (DAN) recommends the following on no-fly times:

 A minimum surface interval of 12 hours would be required in order to be reasonably assured a diver will remain symptom free upon ascent to altitude in a commercial jetliner (altitude up to 2,400 m/8,000 ft).

- Divers who plan to make daily, multiple dives for several days, or make dives that
 require decompression stops, should take special precautions and wait for an extended interval beyond 12 hours before a flight. Further, the Undersea and Hyperbaric Medical Society (UHMS) suggests divers using standard air cylinders and
 exhibiting no symptoms of decompression illness wait 24 hours after their last dive
 to fly in an aircraft with cabin pressure up to 2,400 m/8,000 ft. The only two exceptions to this recommendation are:
 - If a diver has less than two (2) hours total accumulated dive time in the last 48 hours, a 12 hour surface interval before flying is recommended.
 - Following any dive that required a decompression stop, flying should be delayed for at least 24 hours, and if possible, for 48 hours.
- Suunto recommends that flying is avoided until all the DAN and UHMS guidelines, as well as the dive computer's no-fly conditions, are satisfied.

7.5. PLAN mode

The PLAN mode includes a dive planner (PLAN Nodec) and simulation mode (PLAN Simulator).



7.5.1. DIVE PLANNING mode (PLAN NoDec)

The DIVE PLANNING mode displays no-decompression times for a new dive, taking into account the effects of previous dives.

When entering the PLAN nodec mode, the display first briefly shows the remaining desaturation time before going into plan mode.

By pressing the UP/DOWN buttons, you can scroll the no-decompression limits in 3 m/10 ft increments ending at 45 m/150 ft. No-decompression limits longer than 99 min are displayed as "—".

WHEN ENTERING THE PLANNODEC MODE THE DISPLAY FIRST BRIEFLY SHOWS TISSUE LOADING, THE REMAINING DESATURATION TIME BEFORE GOING INTO PLAN MODE. USE UP AND DOWN BUTTONS TO SCROLL DIFFERENT NO-DECOMPRESSION LIMITS. NO-DECOMPRESSION LIMITS LONGER THAN 99 MINUTES ARE DISPLAYED AS "-".

The Planning mode takes into account the following information from previous dives:

- any calculated residual nitrogen
- all dive history for the past four days

The no-decompression times given for different depths will therefore be shorter than before your first "fresh" dive.

You can exit the Planning mode by pressing the MODE button.

NOTE

The Planning mode is disabled in GAUGE mode and in Error mode (see Section 5.5. Error conditions). The planning mode calculates no-decompression times for MIX1 only. If an additional mix is enabled in the NITROX mode, it does not affect the calculations in PLAN NoDec mode.

Higher Altitude and conservative Personal Adjustment settings will shorten the nodecompression time limits. These limits at different Altitude and Personal Adjustment setting selections are explained in *Section 5.8.4. Diving at altitude* and in *Section 5.8.5. Personal adjustments*

Dive numbering shown during dive planning

Dives belong to the same repetitive dive series if the instrument was still counting down the no-fly time at the beginning of the dive.

The surface interval must be at least 5 minutes for a dive to be considered a repetitive dive. Otherwise, it is considered a continuation of the same dive. The dive number will not change and the dive time will continue where it left off. (See also Section 7.2. Dive numbering).

7.5.2. Simulation Mode (PLAN Simulator)

The Simulation mode can be used to become familiar with the features and displays of the device before diving, to plan dives in advance, for demonstrational or educational purposes, or just for fun.

In the Simulation mode, time runs faster than real time, so after 15 seconds using a simulator, the dive time will be one minute.

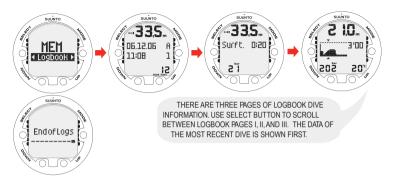
Dive Simulator

The Dive Simulator is an excellent tool for familiarizing yourself with your dive computer and for planning your dives. The Dive Simulator allows you to "perform" dive profiles of your choice and to see what the display would look like during an actual dive - including basic dive information as well as audible and visual warnings.


The mode can also be used to add the desired surface intervals for dive simulations. Add the desired surface interval increments to the present surface interval by pressing the UP and DOWN buttons.

7.6. MEMORY mode

The memory options include a dive logbook (MEM Logbook) and dive history (MEM History).


The dive entry time and date is registered in the Logbook memory. Always check before diving that the time and date are correctly set, especially after travelling between different time zones.

7.6.1. Dive logbook (MEM Logbook)

The Suunto Cobra3 has a very sophisticated, high capacity Logbook and Profile Memory. The data is recorded in the profile memory based on the selected sample rate.

The END OF LOGS text is displayed between the oldest and most recent dive. The following information will be shown on three pages:

Page I, main display

- · maximum depth
- date of dive
- type of dive (AIR, NITROX, GAUGE)
- dive start time
- dive number
- · oxygen percentage for Mix1
- total dive time (in minutes in all modes)

Page II

maximum depth

- warnings
- · consumed tank pressure

Page III

- water temperature
 - tank pressure

The memory will retain approximately the last 42 hours of dive time. After that, when new dives are added, the oldest dives are deleted. The contents of the memory will remain when the battery is changed (providing that the battery has been replaced according to the instructions).

Several repetitive dives are considered to belong to the same repetitive dive series if the no-fly time has not ended. See Section 7.2. Dive numbering for further information.

7.6.2. Dive history (MEM History)

The dive history is a summary of all the dives recorded by the dive computer.

The following information will be shown on the display:

The Dive History Memory can hold a maximum of 999 dives and 999 diving hours. When these maximum values are reached, the counters will start again from zero.

NOTE

The maximum depth can be reset to 0.0 m/0 ft using the PC Interface unit and the downloadable Suunto DM4 Dive Manager software.

7.7. Suunto DM4 with Movescount

The Suunto DM4 with Movescount (DM4) is an optional software that greatly enhances the functionality of your Suunto Cobra3. With the DM4 software, you can download dive data from your dive computer to your laptop. After that, you can view and organize all the data recorded with your Suunto Cobra3. You can plan dives (with Suunto Dive Planner), print copies of your dive profiles, and also upload your dive logs to share with your friends at http://www.movescount.com (see Section 7.8. Movescount). You can always download the latest version of the DM4 from http://www.suunto.com. Please check for updates regularly as new features are constantly being developed. The following data is transferred from your dive computer to your laptop (optional, cable required):

- · depth profile of the dive
- · dive time
- · preceding surface interval time
- dive number
- dive start time (year, month, day, and time)
- · dive computer settings
- oxygen percentage settings and maximum OLF (in the NITROX mode)
- tissue calculation data
- real-time water temperature
- tank pressure data (if enabled)
- additional dive information (for example, SLOW and Mandatory Safety Stop violations, Diver Attention Symbol, Bookmark, Surfaced Mark, Decompression Stop Mark, and Ceiling Error Mark)
- dive computer serial number
- personal information (30 characters)

By using the DM4, you are able to enter setup options such as:

- input a personal, 30-character field into the Suunto instrument.
- reset the Scuba History's maximum depth to zero
- · reset all Free Dive History
- manually add comments, multimedia and other personal information to the PCbased dive data files

7.8. Movescount

Movescount is an online sports community that offers you a rich set of tools to manage all you sports and create engaging stories about your diving experiences. Movescount offers you new ways to get inspired and share your best dives with other community members!

To connect to Movescount:

- Go to www.movescount.com.
- Register and create your free Movescount account.
- Download and install the Suunto DM4 with Movescount software from the Movescount.com website if you do not already have the DM4 installed on your laptop

To transfer data:

- Connect your dive computer to your laptop.
- 2. Download your dives to the DM4 on your laptop.
- Follow the instructions on the DM4 on how to transfer your dives to your Movescount.com account.

8. CARE AND MAINTENANCE OF MY SUUNTO DIVING COMPUTER

The SUUNTO dive computer is a sophisticated precision instrument. Although it is designed to withstand the rigors of scuba diving, you must treat it with the same proper care and caution as any other precision instrument.

WATER CONTACTS AND PUSH BUTTONS

Contamination or dirt on the water contacts/connector or push buttons may prevent the automatic activation of the Dive Mode and cause problems during the data transfer. Therefore, it is important that the water contacts and push buttons are kept clean. If the water contacts are active (AC text remains on display) or the Dive Mode activates on its own, the reason for this is probably contamination or invisible marine growth, which may create an electric current between the contacts. It is important that the dive computer is carefully washed in fresh water after the day's diving is completed. The contacts can be cleaned with fresh water and, if necessary, a mild detergent and a soft brush. Sometimes it might be necessary to remove the instrument from the protective boot for cleaning.

- CARE OF YOUR DIVE COMPUTER
 - NEVER try to open the case of the dive computer.
 - Have your dive computer serviced every two years or after 200 dives (whichever
 comes first) by an authorized dealer or distributor. This service will include a
 general operational check, replacement of the battery, and water resistance
 check. The service requires special tools and training. Therefore, it is advisable
 to contact an authorized SUUNTO dealer or distributor for service. Do not attempt to do any servicing that you are not sure of.

- Should moisture appear inside the case or battery compartment, immediately have the instrument checked by your SUUNTO dealer or distributor.
- Should you detect scratches, cracks or other such flaws on the display that may impair its durability, immediately have it replaced by your SUUNTO dealer or distributor.
- · Wash and rinse the unit in fresh water after every use.
- Protect the unit from shock, extreme heat, direct sunlight, and chemical attack.
 The dive computer cannot withstand the impact of heavy objects like scuba
 cylinders, nor chemicals like gasoline, cleaning solvents, aerosol sprays, adhesive agents, paint, acetone, alcohol, and so on. Chemical reactions with such
 agents will damage the seals, case and finish.
- Store your dive computer in a dry place when you are not using it.
- The dive computer will display a battery symbol as a warning when the power gets too low. When this happens, the instrument should not be used until the battery has been replaced.
- Do not fasten the strap of your dive computer too tightly. You should be able
 to insert your finger between the strap and your wrist. Shorten the strap by
 cutting it if you do not expect to need the extra length.

MAINTENANCE

The instrument should be soaked, thoroughly rinsed with fresh water, then dried with a soft towel after each dive. Make sure that all salt crystals and sand particles have been flushed out. Check the display and the transparent battery compartment cover for possible moisture or water. DO NOT use the dive computer if you detect any moisture or water inside. In order to limit corrosion damage, remove the battery and moisture from the battery compartment. Contact an authorized Suunto dealer for battery replacement or other service.

CAUTION!

- Do not use compressed air to blow water off the unit.
- Do not use solvents or other cleaning fluids that might cause damage.
- · Do not test or use the dive computer in pressurized air.
- WATER RESISTANCE INSPECTION

The water resistance of the unit must be checked after replacing the battery or after other service operations. The check requires special equipment and training. You must frequently check the transparent battery compartment cover and the display for any sign of leaks. If you find moisture inside your dive computer, there is a leak. A leak must be corrected without delay as moisture will seriously damage the unit, even beyond repair. SUUNTO does not take any responsibility for damage caused by moisture in the dive computer unless the instructions of this manual are carefully followed. In the event of a leak, immediately take the dive computer to an authorized SUUNTO dealer or distributor.

FAQs

For more information on service, please refer to FAQs on www.suunto.com.

9. BATTERY REPLACEMENT

NOTE

It is advisable to contact an authorized Suunto representative for battery replacement. It is imperative that the change is made in a proper manner to avoid any leakage of water into the battery compartment or computer.

△ CAUTION

When the battery is changed, all nitrogen and oxygen uptake data is lost. Therefore, the no-fly time shown by the computer should have reached zero or you must wait for 48 hours, or preferably up to 100 hours, before you dive again.

All history and profile data, as well as the altitude, personal, and alarm settings, will remain in the dive computer memory after the battery change. However, the clock time and time alarm settings are lost. In the NITROX mode, the gas nitrox settings also revert back to default settings (Mix1 21% O_2 , 1.4 bar PO_2 , Mix2 OFF, Mix2-Mix8 OFF).

When working with the battery compartment, cleanliness is extremely important. Even the smallest dirt particles may cause a leakage when you dive.

9.1. Battery kit

The battery kit includes a 3.0 V coin type lithium cell battery and a lubricated O ring. When handling the battery do not make contact with both of the poles at the same time. Do not touch the surfaces of the battery with your bare fingers.

9.2. Required tools

- A Phillips-head screwdriver.
- · Soft cloth for cleaning.
- · Needlenose pliers or small screwdriver for turning securing ring.

9.3. Replacing the battery

The battery and the buzzer are located in the back of the instrument in a separate compartment. To change the battery:

- Unscrew the four screws at the back of the elastomer console and remove the back cover of the console.
- 2. Thoroughly rinse and dry the computer.
- 3. Open the securing ring of the battery compartment lid by pushing it down and rotating it clockwise. You may use a pointed nose pliers or a small screwdriver as an aid in the rotating. Put the pliers ends into the holes of the securing ring or the screwdriver onto the side of the right tooth on the ring and turn the ring clockwise. Be careful not to damage any of the parts.
- 4. Remove the ring.
- 5. Carefully remove the lid with the beeper attached to it. You can remove the lid by pressing with your finger on the outermost edge of the lid while simultaneously pulling with your nail at the opposite side. Don't use sharp metal objects as they might damage the O-ring or the sealing surfaces.
- 6. Remove the O-ring and the battery retainer.
- Carefully remove the battery. Do not damage the electrical contacts or the sealing surface.

- Check for any traces of flooding, particularly between the beeper and the lid, or for any other damage. In case of a leak or any other damage, bring the dive computer to an authorized SUUNTO dealer or distributor for check and repair.
- Check the condition of the O-ring; a defective O-ring may indicate sealing or other problems. Dispose the old O-ring, even if it seems to be in good condition.
- Check that the battery compartment, battery holder and lid are clean. Clean with soft cloth if necessary.
- 11. Reinstall the battery retainer in its correct position.
- 12. Check that the new lubricated O-ring is in good condition. Put it in the right position on the battery compartment lid. Be very careful not to get any dirt on the o-ring or its sealing surfaces.
- 13. Carefully press the lid onto the battery compartment with your thumb, while making sure that the O-ring is not at any point protruding out on the edge.
- 14. Put your other thumb through the locking ring. Press this thumb firmly against the lid and release the other one. Make sure that the lid is pressed completely down!
- Turn the locking ring counterclockwise with your free thumb and fingers until it snaps into its locked position.
- 16. The dive computer should now active its timekeeping mode and show time 18:00 [6:00 PM] and date SA 01,01. Activate the instrument. Check that
 - all display segments work.
 - · the low battery warning is off.
 - · the buzzer beeps and backlight works.
 - · all the settings are correct. Reset if necessary.
- 17. Reassemble computer into the console. The instrument is now ready for use.

CAUTION

Check after the first dives for possible moisture under the transparent battery compartment lid, indicating a leak.

Securing Ring

Battery Compartment Lid with buzzer

O-Ring

Battery Retainer

Battery

10. TECHNICAL DATA

10.1. Technical specifications

Dimensions and weight:

- Diameter: width 73 mm/2.85 in, length 165 mm/6.50 in
- · Thickness: 35 mm/1.40 in
- Weight: 210 g/7.4 oz (without hose)

Depth gauge:

- Temperature compensated pressure sensor
- · Calibrated complying with EN 13319
- Maximum depth of operation: 100 m/328 ft (complying with EN 13319)
- Accuracy: ± 1% of full scale or better from 0 to 100 m/328 ft at 20°C/68°F (complying with EN 13319)
- Depth display range: 0 to 150 m/492 ft
- Resolution: 0.1 m from 0 to 100 m/1 ft from 0 to 328 ft

Cylinder pressure gauge:

- Rated working pressure: 300 bar/4000 psi, maximum allowed pressure
- Resolution: 1 bar/10 psi

Other displays

- Dive time: 0 to 999 min, counting starts and stops at 1.2 m /4 ft depth
- · Surface time: 0 to 99 h 59 min
- Dive counter: 0 to 99 for repetitive dives
- No-decompression time: 0 to 99 min (- after 99)
- Ascent time: 0 to 99 min (- after 99)

Ceiling depths: 3.0 to 100 m /10 to 328 ft

• Air time: 0 to 99 min (- - after 99)

Temperature display:

Resolution: 1°C/1°F

Display range: -20 to +50°C/-9 to +122°F
 Display range: -9 to +50°C/-9 to +122°F

Accuracy: ± 2°C/± 3.6°F within 20 minutes of temperature change

Displays only in NITROX mode:

Oxygen %: 21–99

Oxygen partial pressure display: 0.2–3.0 bar.

Oxygen Limit Fraction: 1–200% with 1% resolution

Logbook/dive profile memory:

• Recording interval: 20 seconds adjustable (10, 20, 30, 60 s).

Memory capacity: approximately 42 hours of diving with 20 second recording interval

Depth resolution: 0.3 m/1 ft

Operating conditions:

Normal altitude range: 0 to 3,000 m/10,000 ft above sea level

Operating temperature: 0°C to 40°C/32°F to 104°F

Storage temperature: -20°C to +50°C/ -4°F to +122°F

It is recommended that the instrument be stored in a dry place at room temperature.

NOTE

Do not leave the dive computer in direct sunlight!

Tissue calculation model:

- Suunto RGBM algorithm (developed by Suunto and Bruce R. Wienke, BSc, MSc, PhD)
- 9 tissue compartments
- Tissue compartment halftimes: 2.5, 5, 10, 20, 40, 80, 120, 240, and 480 minutes (on gassing). The off gassing halftimes are slowed down
- Reduced gradient (variable) "M" values based on diving habit and dive violations.
 The "M" values are tracked up to 100 hours after a dive
- The EAN and oxygen exposure calculations are based on recommendations by R.W. Hamilton, PhD and currently accepted exposure time limit tables and principles.

Battery:

- One 3 V lithium battery: CR 2450
- Battery storage time (shelf life): Up to three years
- · Replacement: Every three years, or more often depending on dive activity
- Life expectancy at 20°C/68°F:
 - 0 dives/year -> 3 years
 - 100 dives/year ->1.5 years
 - 300 dives/year ->1 year

The following conditions have an effect on the expected battery lifetime:

- · The length of the dives
- The conditions in which the unit is operated and stored (for example, temperature/cold conditions). Below 10°C/50°F the expected battery lifetime is about 50-75% of that at 20°C/68°F.
- The use of the backlight and audible alarms

- · The use of the compass
- The quality of the battery. (Some lithium batteries may exhaust unexpectedly, which cannot be tested in advance)
- The time the dive computer has been stored until it gets to the customer. (The battery is installed in the unit at the factory)

Low temperature or an internal oxidation of the battery may activate the battery warning even though the battery has enough capacity. In this case, the warning usually disappears when the DIVE mode is activated again.

10.2. RGBM

The Suunto Reduced Gradient Bubble Model (RGBM) is a modern algorithm for predicting both dissolved and free gas in the tissues and blood of divers. It was developed in co-operation between Suunto and Bruce R. Wienke BSc, MSc, PhD. It is based on both laboratory experiments and diving data, including data from DAN.

It is a significant advance on the classical Haldane models, which do not predict free gas (microbubbles). The advantage of Suunto RGBM is additional safety through its ability to adapt to a wide variety of situations. Suunto RGBM addresses a number of diving circumstances outside the range of dissolved-gas-only models by:

- · Monitoring continuous multiday diving
- Computing closely spaced repetitive diving
- · Reacting to a dive deeper than the previous dive
- Adapting to rapid ascents which produce high microbubble (silent-bubble) buildup

· Incorporating consistency with real physical laws for gas kinetics

10.2.1. Suunto RGBM adaptive decompression

The Suunto RGBM algorithm adapts its predictions of both the effects of microbubble build-up and adverse dive profiles in the current dive series. It also changes these calculations according to the personal adjustment you select.

The pattern and speed of decompression at the surface is adjusted according to microbubble influence.

On repetitive dives, adjustment may also be applied to the maximum allowable nitrogen overpressure in each theoretical tissue group.

Depending on the circumstances, Suunto RGBM will adapt the decompression obligations by doing any or all of the following:

- · Reducing No-decompression Stop dive times
- Adding Mandatory Safety Stops
- · Increasing Decompression Stop times
- Advising an extended surface interval (Diver Attention symbol)

Diver Attention Symbol – Advice to Extend Surface Interval

Some patterns of diving cumulatively add a higher risk of DCI; for example, dives with short surface intervals, repetitive dives deeper than earlier ones, multiple ascents, and substantial multiday diving. When this is detected, in addition to adapting the decompression algorithm, the Suunto RGBM model will in some circumstances also advise, with the Diver Attention Symbol, that you extend your surface interval.

10.2.2. No-decompression limits for air

The no-decompression limits displayed by the dive computer for the first dive to a single depth (see *Table 10.1, No-decompression time limits for various depths (m)* and *Table 10.2, No-decompression time limits for various depths (ft)* .), are slightly more conservative than those permitted by the U.S. Navy tables.

Table 10.1. No-decompression time limits for various depths (m)

	No-dec	ompress				or variou of a serie		s (m)		
Depth		Personal Mode / Altitude Mode								
(m)	P0/A0	P0/A1	P0/A2	P1/A0	P1/A1	P1/A2	P2/A0	P2/A1	P2/A2	
9	205	148	97	181	133	86	160	120	76	
12	124	77	54	108	69	50	93	63	46	
15	71	51	34	65	47	31	59	42	29	
18	51	34	24	47	32	22	43	29	20	
21	37	26	17	34	24	15	31	21	13	
24	29	19	11	27	17	10	25	16	9	
27	22	13	8	20	12	7	19	11	7	
30	17	10	6	16	9	5	14	9	5	
33	13	8	4	12	7	4	11	6	4	

	No-decompression time limits (mins) for various depths (m) for the first dive of a series									
Depth	Personal Mode / Altitude Mode									
(m)	P0/A0 P0/A1 P0/A2 P1/A0 P1/A1 P1/A2 P2/A0 P2/A1								P2/A2	
36	10	6	4	9	5	3	9	5	3	
39	8	5	3	8	4	3	7	4	3	
42	6	4	3	6	4	3	5	3	2	
45	5	3	2	5	3	2	4	3	2	

Table 10.2. No-decompression time limits for various depths (ft)

	No-dec	No-decompression time limits (mins) for various depths (ft) for the first dive of a series									
Depth		Personal Mode / Altitude Mode									
(ft)	P0/A0	P0/A0 P0/A1 P0/A2 P1/A0 P1/A1 P1/A2 P2/A0 P2/A1 P2/A2							P2/A2		
30	199	144	93	176	130	82	156	117	73		
40	120	74	52	103	67	48	90	61	44		
50	69	50	33	63	45	30	57	41	28		
60	50	33	23	46	31	21	41	28	19		
70	36	25	16	33	23	14	30	21	12		
80	28	18	10	26	17	10	23	15	9		

	No-decompression time limits (mins) for various depths (ft) for the first dive of a series										
Depth		Personal Mode / Altitude Mode									
(ft)	P0/A0	P0/A1	P0/A2	P1/A0	P1/A1	P1/A2	P2/A0	P2/A1	P2/A2		
90	21	13	8	19	11	7	18	10	6		
100	17	10	5	15	9	5	13	8	5		
110	12	7	4	11	7	4	10	6	4		
120	10	6	4	9	5	3	8	5	3		
130	8	5	3	7	4	3	6	4	3		
140	6	4	3	6	4	2	5	3	2		
150	5	3	2	5	3	2	4	3	2		

10.2.3. Altitude diving

The atmospheric pressure is lower at high altitudes than at sea level. After traveling to a higher altitude, you will have additional nitrogen in your body, compared to the equilibrium situation at the original altitude. This "additional" nitrogen is released gradually over time and equilibrium is restored. It is recommended that you acclimatize to a new altitude by waiting at least three hours before making a dive.

Before high-altitude diving, the instrument must be set to the Altitude Adjustment mode to adjust the calculations for the new altitude. The maximum partial pressures of nitrogen allowed by the mathematical model of the dive computer are reduced according to the lower ambient pressure.

As a result, the allowed no-decompression-stop limits are considerably reduced.

10.3. Oxygen exposure

The oxygen exposure calculations are based on currently accepted exposure time limit tables and principles. In addition to this, the dive computer uses several methods to conservatively estimate the oxygen exposure. For example:

- The displayed oxygen exposure calculations are raised to the next higher percentage value.
- The CNS % limits up to 1.6 bar are based on 1991 NOAA Diving Manual limits
- The OTU monitoring is based on the long-term daily tolerance level and the recovery rate is reduced.

Oxygen related information displayed by the dive computer is also designed to ensure that all warnings and displays occur at the appropriate phases of a dive. For example, the following information will be shown before and during a dive when the computer is set in NITROX mode:

- The selected O₂% on the alternative display
- OLF% alternative display for either CNS% or OTU% (whichever is larger)
- Audible alarms are given and the OLF value starts to blink when the 80% and 100% limits are exceeded.
- Audible alarms are given and the actual PO₂ value blinks when it exceeds the preset limit.
- In dive planning, the maximum depth according to the O₂% and maximum PO₂ selected.

11. INTELLECTUAL PROPERTY

11.1. Trademark

Suunto is a registered trademark of Suunto Oy.

11.2. Copyright

© Suunto Oy 08/2011. All rights reserved.

11.3. Patent notice

Patents have been issued or applied for one or several features of this product.

12. DISCLAIMERS

12.1. CE

The CE mark is used to mark conformity with the European Union EMC directive 89/336/EEC.

12.2. EN 13319

EN 13319 is a European diving depth gauge standard. Suunto dive computers are designed to comply with this standard.

12.3. EN 250 / FIOH

The tank pressure gauge and dive instrument parts used in measuring the tank pressure meet the requirements set in the section of the European Standard EN 250 that concern tank pressure measurements. FIOH, notified body no.0430, has EC type-examined this type of personal protective equipment.

13. SUUNTO LIMITED WARRANTY

Suunto warrants that during the Warranty Period Suunto or a Suunto Authorized Service Center (hereinafter Service Center) will, at its sole discretion, remedy defects in materials or workmanship free of charge either by a) repairing, or b) replacing, or c) refunding, subject to the terms and conditions of this Limited Warranty. This Limited Warranty is only valid and enforceable in the country of purchase, unless local law stipulates otherwise.

Warranty Period

The Limited Warranty Period starts at the date of original retail purchase. The Warranty Period is two (2) years for display devices. The Warranty Period is one (1) year for accessories and consumable parts, including but not limited to chargeable batteries, chargers, docking stations, straps, cables and hoses.

Exclusions and Limitations

This Limited Warranty does not cover:

- a) normal wear and tear, b) defects caused by rough handling, or c) defects or damage caused by misuse contrary to intended or recommended use;
- 2. user manuals or any third-party items;
- defects or alleged defects caused by the use with any product, accessory, software and/or service not manufactured or supplied by Suunto;
 - replaceable batteries.

This Limited Warranty is not enforceable if item:

- 1. has been opened beyond intended use;
- has been repaired using unauthorized spare parts; modified or repaired by unauthorized Service Center;

- serial number has been removed, altered or made illegible in any way, as determined at the sole discretion of Suunto;
- 4. has been exposed to chemicals including but not limited to mosquito repellents.

Suunto does not warrant that the operation of the Product will be uninterrupted or error free, or that the Product will work in combination with any hardware or software provided by a third party.

Access to Suunto warranty service

Register your item at www.suunto.com/register and save the purchase receipt and/or registration card. For instructions how to obtain warranty service, visit www.suunto.com, contact your local authorized Suunto retailer, or call Suunto Help Desk +358 2 2841160 (national or premium rates may apply).

Limitation of Liability

To the maximum extent permitted by applicable mandatory laws, this Limited Warranty is your sole and exclusive remedy and is in lieu of all other warranties, expressed or implied. Suunto shall not be liable for special, incidental, punitive or consequential damages, including but not limited to loss of anticipated benefits, loss of data, loss of use, cost of capital, cost of any substitute equipment or facilities, claims of third parties, damage to property resulting from the purchase or use of the item or arising from breach of the warranty, breach of contract, negligence, strict tort, or any legal or equitable theory, even if Suunto knew of the likelihood of such damages. Suunto shall not be liable for delay in rendering warranty service.

14. DISPOSAL OF THE DEVICE

Please dispose of the device in an appropriate way, treating it as electronic waste. Do not throw it in the garbage. If you wish, you may return the device to your nearest Suunto representative.

GLOSSARY

CNS%

Air time The amount of dive time remaining, based on a calculation of cylinder

pressure and ambient pressure and present air consumption.

Altitude dive A dive made at an elevation greater than 300 m/1000 ft above sea level.

Ascent rate The speed at which the diver ascends toward the surface.

ASC RATE Abbreviation for ascent rate.

Ascent time The minimum amount of time needed to reach the surface on a decom-

pression stop dive.

ASC TIME Abbreviation for ascent time.

Ceiling On a decompression stop dive, the shallowest depth to which a diver may

ascend based on computed nitrogen load.

Ceiling zone On a decompression stop dive, the zone between the ceiling and the

ceiling plus 1.8 m/6 ft. This depth range is displayed with two arrows

pointing toward each other (the "hour glass" icon).

Central nervous system toxicity Toxicity caused by oxygen. Can cause a variety of neurological symptoms.

The most important of which is an epileptic-like convulsion which can

cause a diver to drown.

CNS Abbreviation for central nervous system toxicity.

Central nervous system toxicity limit fraction. Also note Oxygen Limit

Fraction

Compartment See "Tissue group".

DAN Abbreviation for Divers Alert Network.

DCI Abbreviation for decompression illness.

DM4 Suunto DM4 with Movescount, a software for managing your dives Decompression Time spent at a decompression stop, or range, before surfacing, to allow absorbed nitrogen to escape naturally from tissues Decompression range On a decompression stop dive, the depth range between the floor and the ceiling within which a diver must stop for some time during ascent. Decompression illness Any of a variety of maladies resulting either directly or indirectly from the formation of nitrogen bubbles in tissues or body fluids, as a result of inadequately controlled decompression. Commonly called "the bends" or "DCI". Dive series A group of repetitive dives between which the dive computer indicates some nitrogen loading is present. When nitrogen loading reaches zero the dive computer deactivates. Dive time Elapsed time between leaving the surface to descend, and returning to

the surface at the end of a dive.

Delta P, describing the Cylinder Pressure drop during the dive; the difference in cylinder pressure between the beginning and end of a dive.

Abbreviation for equivalent air depth.

Abbreviation for enriched air nitrox.

Also called nitrox or Enriched Air = EANx. Air that has some oxygen added. Standard mixes are EAN32 (NOAA Nitrox I = NN I) and EAN36 (NOAA Nitrox II = NN II).

Nitrogen partial pressure equivalent table.

The deepest depth during a decompression stop dive at which decompression takes place.

110

Floor

۸P

FAD

FAN

Enriched air nitrox

Equivalent air depth

Half time After a change in ambient pressure, the amount of time required for the partial pressure of nitrogen in a theoretical compartment to go half way

from its previous value to saturation at the new ambient pressure.

HP Abbreviation for high pressure (= cylinder pressure).

MOD

Multi level dive

No decompression time

The maximum operating depth of a breathing gas is the depth at which

the partial pressure of oxygen (PO2) of the gas mix exceeds a safe limit.

A single or repetitive dive that includes time spent at various depths and whose no decompression limits are therefore not determined solely by

the maximum depth attained.

Nitrox In sports diving, refers to any mix with a higher fraction of oxygen than

standard air.

NOAA United States National Oceanic and Atmospheric Administration.

The maximum amount of time a diver may remain at a particular depth without having to make decompression stops during the subsequent as-

cent.

No decompression dive Any dive which permits a direct, uninterrupted ascent to the surface at

any time.

NO DEC TIME

Abbreviation for no decompression time limit.

OEA = EAN = EANx

Abbreviations for oxygen enriched air nitrox.

OLF Abbreviation for oxygen limit fraction.
OTU Abbreviation for oxygen tolerance unit.
Oxygen tolerance unit Used to measure the whole-body-toxicity.

Oxygen limit fraction A term used by Suunto for the values displayed in the oxygen toxicity bar

graph. The value is either the CNS% or the OTU%.

has 21% oxygen.

Oxygen partial pressure Limits the maximum depth to which the nitrox mixture can be safely used.

> The maximum partial pressure limit for enriched air diving is 1.4 bar. The contingency partial pressure limit is 1.6 bar. Dives beyond this limit risk

> Oxygen percentage or oxygen fraction in the breathing gas. Standard air

immediate oxygen toxicity.

PFO Abbreviation for patent foramen ovale. It is a form of congenital heart

defect that enables blood flow between the left and right atria via the in-

teratrial septum.

PO₂ Abbreviation for oxygen partial pressure.

RGRM Abbreviation for Reduced Gradient Bubble Model.

Reduced Gradient Bubble Model Modern algorithm for tracking both dissolved and free gas in divers.

Any dive whose decompression time limits are affected by residual nitro-

gen absorbed during previous dives.

The amount of excess nitrogen remaining in a diver after one or more

dives

SURF TIME Abbreviation for surface interval time

Surface interval time Elapsed time between surfacing from a dive and beginning a descent for

the subsequent repetitive dive.

Tissue group Theoretical concept used to model bodily tissues for the construction of

decompression tables or calculations.

UHMS Abbreviation for Undersea and Hyperbaric Medical Society.

112

Repetitive dive

Residual nitrogen

02%

Whole-body toxicity

Another form of oxygen toxicity, which is caused by prolonged exposure to high oxygen partial pressures. The most common symptoms are irritation in the lungs, a burning sensation in the chest, coughing and reduction of the vital capacity. Also called Pulmonary Oxygen Toxicity. See also OTU.

suunto.com/support

Copyright © Suunto Oy 09/2008, 10/2008, 11/2008, 08/2011. Suunto is a registered trademark of Suunto Oy. All Rights reserved.